
Corsi d'acqua

alla ricerca di integrazione tra uomo e ambiente

CORSO DI FORMAZIONE

28 maggio 2024

Città Metropolitana di Torino

Dott. Agr. Alessandro Errico, CIRF

IL RUOLO ECOLOGICO DELLA VEGETAZIONE RIPARIA

COMPONENTE FONDAMENTALE per gran parte degli ecosistemi fluviali:

- Habitat per gran parte delle specie animali acquatiche, anfibie e terrestri;
- Corridoio ecologico per migrazioni e/o spostamenti in aree antropizzate;
- Input di biomassa alla base delle reti trofiche fluviali;
- Filtro dagli inquinanti provenienti dalle aree circostanti il corso d'acqua; più in generale incremento dell'autodepurazione del fiume;
- Ombreggiamento, contenimento della temperatura dell'acqua in periodo di magra (importantissimo in corsi d'acqua di piccole dimensioni con tiranti bassi);
- Miglioramento dei suoli costituenti le sponde;
- Diversificazione degli alvei e degli argini, effetti sulla morfologia del corso d'acqua.

PROBLEMATICHE IDRAULICHE CONNESSE ALLA VEGETAZIONE RIPARIA

- Riduzione della sezione utile
- Aumento della resistenza al moto
- Danneggiamento delle opere idrauliche (es. rilevati arginali, opere di presa)
- Potenziale sorgente di materiale flottante

RIDUZIONE DELLA CAPACITA' DI SMALTIMENTO DELLA SEZIONE

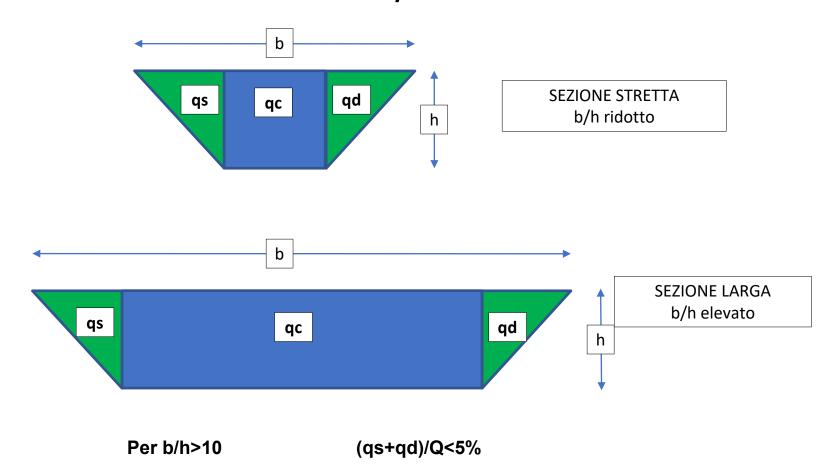
AUMENTO LOCALE DELLA
PROBABILITA' DI
ESONDAZIONE

COME DEFINIRE CRITERI, DISTRIBUZIONE SPAZIALE, TURNI E INTENSITA' DI TAGLIO?

LA DISTRIBUZIONE SPAZIALE DEI TAGLI

IL TAGLIO DELLA VEGETAZIONE PUO' INFLUIRE SUL RISCHIO DI ESONDAZIONE A SCALA DI ASTA FLUVIALE

ACCELERARE IL DEFLUSSO TRASFERISCE IL RISCHIO A VALLE...

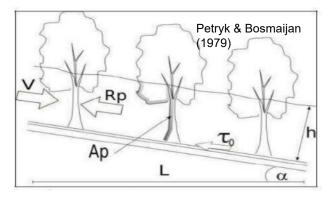

LA VEGETAZIONE RIPARIA PUO' AIUTARE A LAMINARE LE PIENE RIDUCENDO IL RISCHIO NELLE AREE DOVE IL DANNO SAREBBE MAGGIORE

IL RAPPORTO LARGHEZZA/ALTEZZA

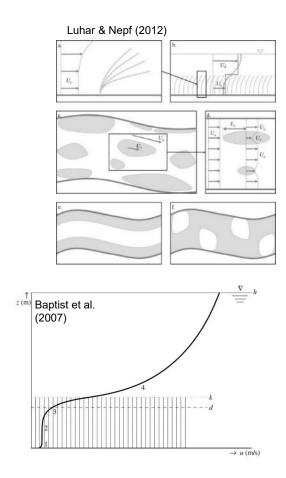
QUANTIFICARE IL CONTRIBUTO DELLA VEGETAZIONE SUL RISCHIO IDRAULICO

E' possibile effettuare valutazioni modellistiche anche molto più dettagliate rispetto all'uso di tabelle...sia per definire i criteri manutentivi che per la progettazione di interventi integrati

TAB.1.2 b - Valori del coefficiente di resistenza di Manning: n (s/m $^{1/3}$) da [Chow V. T.,1959]


CORSI D'ACQUA MINORI (LARGHEZZA A PIENE RIVE < 30 m)

tipo di superficie	Minimo	Normale	Massimo
ALVEI DI PIANURA			
non vegetati, rettilinei, corrente regolare	0.025	0.030	0.033
come sopra ma con pietre e alghe	0.030	0.035	0.040
non vegetati, tortuosi con mollenti e rapide	0.033	0.040	0.045
come sopra ma con pietre e alghe	0.035	0.045	0.050
come sopra, in magra	0.040	0.048	0.055
non vegetati, tortuosi, pietre, mollenti e rapide	0.045	0.050	0.060
molto irregolari e alghe molto fitte	0.075	0.100	0.150
ALVEI DI MONTAGNA (SPONDE CON ALBERI E CESPUGLI)			
sul fondo: ghiaia, ciotoli e massi radi	0.030	0.040	0.050
sul fondo: ciotoli e grandi massi	0.040	0.050	0.070
GOLENE E PIANE INONDABILI			
prato senza cespugli, erba bassa	0.025	0.030	0.035
prato senza cespugli, erba alta	0.030	0.035	0.050
campi incolti	0.020	0.030	0.040
coltivazioni a filari	0.025	0.035	0.045
colture di cereali in pieno sviluppo	0.030	0.040	0.050
aree con cespugli sparsi e erba alta	0.035	0.050	0.070
aree con cespugli bassi e alberi, in inverno	0.035	0.050	0.060
aree con cespugli bassi e alberi, in estate	0.040	0.060	0.080
cespugli fitti, in inverno	0.045	0.070	0.110
cespugli fitti, in estate	0.070	0.100	0.160


MODELLI PER LA STIMA DELLA SCABREZZA VEGETAZIONALE

Chiara distinzione concettuale fra vegetazione:

- Rigida o flessibile
- Sommersa o emergente
- Scala di modellazione (leaf, patch o reach)

MODELLI PER LA STIMA DELLA SCABREZZA VEGETAZIONALE

Solo alcuni esempi:

VEGETAZIONE ERBACEA Nepf (2012)

$$n_{v} = \left[\sqrt{\frac{2}{C_{*}}} \left(1 - \frac{K}{Y} \right)^{3/2} + \sqrt{\frac{2}{\overline{C}_{D}aK}} \frac{K}{Y} \right]^{-1} \left(\frac{Y^{1/6}}{g^{1/2}} \right)$$

n in funzione dell'**altezza** dell'erba

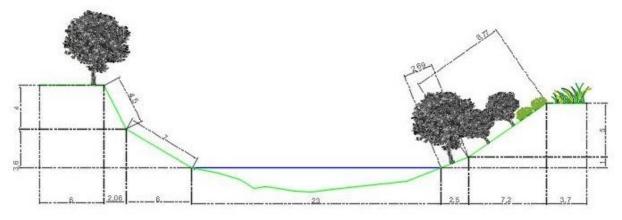
VEGETAZIONE ARBUSTIVA Jarvela (2004)

$$n_{v} = \sqrt{\frac{C_{D\chi}LAI\left(\frac{u_{m}}{u_{\chi}}\right)^{\chi}}{2}} \left(\frac{Y^{1/6}}{g^{1/2}}\right)$$

n in funzione del LAI (Leaf Area Index)

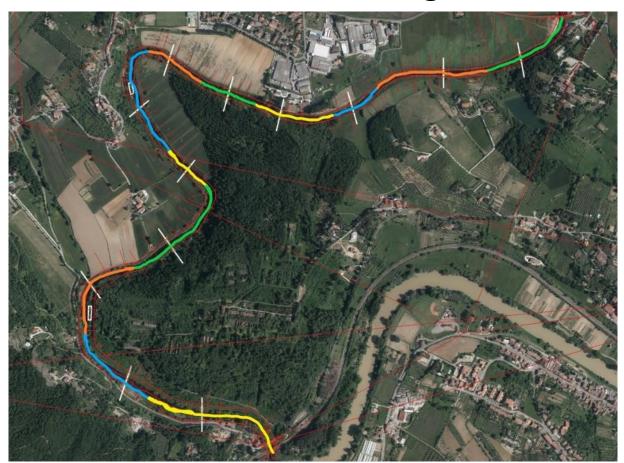
VEGETAZIONE ARBOREA Baptist et al. (2008)

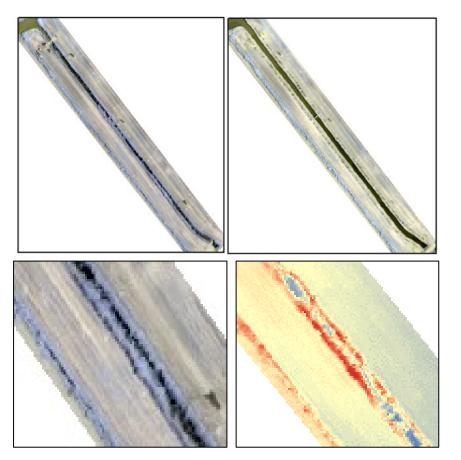
$$n_{v} = \sqrt{\frac{mC_{D}DY}{2}} \left(\frac{Y^{1/6}}{g^{1/2}} \right)$$


n in funzione del **numero e** diametro dei fusti

Rilievi di campo per la determinazione della scabrezza

Rilievi forestali su transetti di larghezza 10 m trasversali al corso d'acqua, lungo sezioni rappresentative di tratti omogenei:

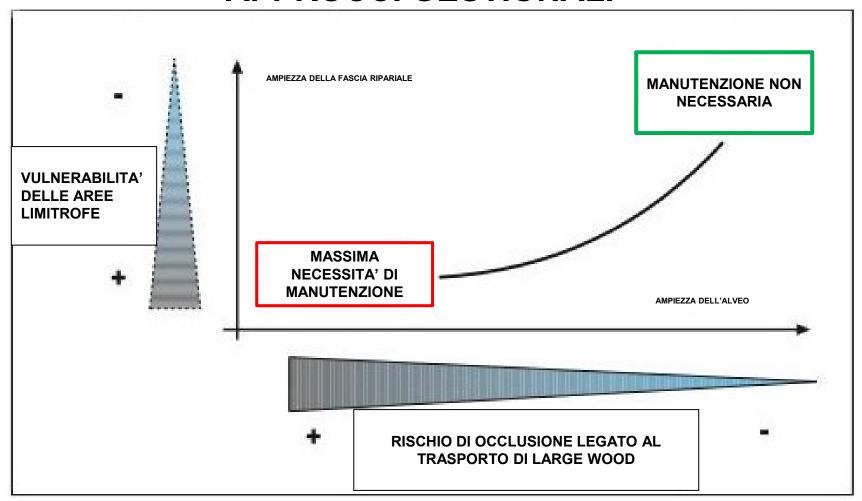

- Misurazione di posizione e diametro dei fusti; determinazione della densità di piante/mq e diametro medio in ciascuna area di saggio
- Perimetrazione e georeferenziazione di tutti i patch di vegetazione arbustiva e a canneto
- Determinazione della scabrezza su ogni nodo mediante l'utilizzo di modelli

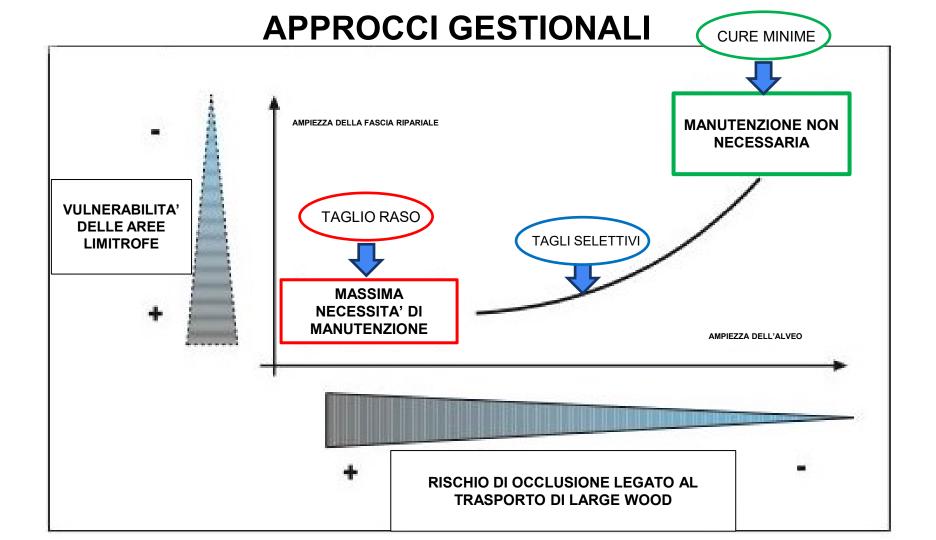


Suddivisione in tratti a scabrezza omogenea

- attribuzione dei coefficienti di scabrezza ottenuti dalla modellazione dei parametri vegetazionali a tutte le sezioni trasversali ricadenti nel tratto omogeneo
- si ottiene un modello idraulico in grado di fornire informazioni dettagliate sull'effetto della vegetazione presente nei vari tratti
- è possibile simulare l'effetto di tagli a differente intensità modificando i parametri vegetazionali direttamente nel modello

Remote sensing – Fotogrammetria e mappe di NDVI da drone




Esempio di sezione trasversale ottenuta da rilievo Lidar su drone

progetto Wequal – Bz

APPROCCI GESTIONALI

TAGLIO RASO

DEVE LIMITARSI AI TRATTI CHE ATTRAVERSANO AREE URBANIZZATE E AI CORPI IDRICI FORTEMENTE MODIFICATI

- è finalizzato a massimizzare la velocità della corrente
- si mantiene la sezione sgombra da vegetazione mediante:
- a) sfalci (almeno 1 all'anno)
- b) ceduazioni frequenti (turni brevi, 3-5 anni)
- la funzionalità ecologica è azzerata
- le sponde sono esposte all'erosione
- aumenta il rischio di ingresso di specie invasive, e le diffonde se già presenti

PER RIDURRE L'IMPATTO:

- Evitare gli sfalci e i tagli nei periodi di nidificazione degli uccelli e riproduzione di anfibi e pesci
- Rilasciare fasce di vegetazione al piede di sponda
- Rilasciare aree di foraggiamento per gli impollinatori almeno nei periodi di fioritura
- Evitare i movimenti di terreno e preservare gli apparati radicali

I TAGLI SELETTIVI

L'INTENSITA' VARIA IN BASE AL RISULTATO CHE SI VUOLE OTTENERE

- a) diradamento energico: eliminazione delle piante con problemi ma anche parte di quelle in buono stato, per favorire deflussi mantenendo almeno in parte la funzionalità della fascia ripariale
- b) diradamento moderato: eliminazione di piante schiantate, fuori asse, pericolanti, senescenti, malate per non accelerare la corrente ma ridurre il carico di LW potenzialmente reclutabile
- c) La finalità del diradamento può essere anche prettamente selvicolturale (ad es. favorire l'evoluzione verso boschi più stabili, aprire buche per la rinnovazione, contrastare l'espansione delle alloctone, etc)

CURE MINIME

- DOVE: nei corsi d'acqua ad ampio alveo di piena, più in generale in contesti con ridotto valore dei beni esposti (es. prati, pascoli, seminativi, incolti, boschi)
- COME: localizzati interventi precauzionali in prossimità di manufatti sensibili (ponti a rischio di occlusione, rilevati arginali, opere di presa), specificamente mirati e di ridotta estensione

Il monitoraggio senza alcun intervento di taglio deve essere comunicato (e percepito) come ATTIVITA' DI GESTIONE di una situazione attualmente stabile e non come un "non fare nulla"!

GESTIONE DELLA VEGETAZIONE RIPARIA NELLE AREE PROTETTE

- grandi alberi, anche morti, da mantenere dove non costituiscono un fattore di rischio
- garzaie: con specifiche esigenze nella struttura del bosco ripario per ogni specie
- uno strato arbustivo ben sviluppato, utile specialmente in un contesto agricolo per diverse specie di uccelli
- corridoi di caccia per i pipistrelli negli spazi aperti dei boschi ripari
- specie vegetali ospiti per vari insetti

Mantenimento della naturalità e della funzionalità ecologica, minimizzando gli impatti antropici (qualità paesaggistica, funzione tampone, di habitat, ecc)

Nei SIC agire in coerenza con i Piani di Gestione!

Deve essere rispettato il principio di NON DETERIORAMENTO degli habitat

TRATTAMENTI PER MIGLIORARE LA FRUIZIONE

La vegetazione non necessariamente impedisce la fruizione...anzi!

- interventi per la sicurezza lungo i percorsi (taglio piante e rami pericolanti);
- trattamenti selettivi per creare percorsi e spazi aperti;
- piccoli accorgimenti per facilitare gli sport acquatici o la pesca;
- trattamenti selettivi vs specie poco compatibili con la fruizione (rovi, robinia e altre specie spinose, ambrosia ed altre piante allergeniche, ecc)

IL LARGE WOOD

- Può essere fonte di rischio, ma solo in determinate condizioni
- Ha un ruolo ecologico importantissimo!

VALUTARE DA DOVE ARRIVA IL LEGNO MORTO: SPESSO NON DALLE FASCE RIPARIE!

Durante eventi di pioggia estrema le piene si verificano in concomitanza con dissesti franosi, che portano in alveo sedimenti ma anche ALBERI

IL RUOLO DEL BOSCO NELLA TRATTENUTA DEL LW

Una vegetazione riparia sviluppata spesso contribuisce a trattenere sedimenti ed altri detriti legnosi, più che a produrne...

E' POSSIBILE GESTIRE AREE RIPARIE COME FILTRI E AREE DI DEPOSITO

IN AREE A RISCHIO ELEVATO DI OSTRUZIONE: opere filtranti

- manutenzione ed asporto degli accumuli
- opere apposite in zone montane

CONTROLLO DELLE SPECIE ALLOCTONE INVASIVE

ovvero

specie opportuniste che si sono inserite in ecosistemi nuovi di cui hanno sconvolto i pre-esistenti equilibri

"PULIRE" NON SERVE A NIENTE, ANZI...

alcune specie, come il poligono giapponese, la canna comune e la robinia, si espandono ulteriormente a seguito di interventi saltuari e sommari

MODALITA' DI INTERVENTO

- interventi diretti sul contenimento delle esotiche
- interventi di miglioramento strutturale delle cenosi autoctone
- interventi volti al ripristino di processi idromorfologici più naturali (con precauzioni da adottare caso per caso)

è nella gestione di interi settori di suolo e di acque che sta la soluzione dei problemi

DEFINIRE OBIETTIVI REALISTICI...

Robinia pseudoacacia, una componente oramai stabile dei popolamenti ripari italiani

- non é quasi mai possibile eliminare completamente le specie alloctone
- quando si tratta di interi popolamenti occorre valutarne una lenta trasformazione per invecchiamento progressivo o accontentarsi della loro non espansione a scapito di altre cenosi
- Tagli troppo intensi e frequenti non fanno che favorire le specie alloctone rispetto alle cenosi locali,
 PEGGIORANDO LA SITUAZIONE

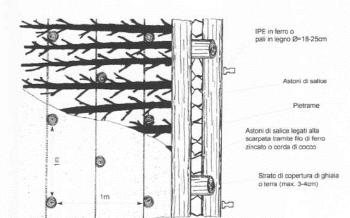
...CERCANDO ALMENO DI NON PEGGIORARE LA SITUAZIONE!

- PRIMA di iniziare attività di taglio e/o movimento terra, censire le specie presenti
- in presenza di alloctone invasive, ADOTTARE TUTTI GLI ACCORGIMENTI PER EVITARE DI DIFFONDERLE ULTERIORMENTE!
- spesso è proprio il cantiere a determinarne la definitiva affermazione

LA VEGETAZIONE NELLA PROGETTAZIONE DI INTERVENTI INTEGRATI

- 1) partire da un quadro conoscitivo approfondito delle cenosi vegetali presenti
- 2) determinare gli **impatti del progetto sulla vegetazione presente** e progettare azioni per la mitigazione/ripristino/miglioramento dei popolamenti
- 3) ATTENZIONE A LASCIARE SPAZI VUOTI: se ci sono le condizioni per l'insediamento di vegetazione, meglio accompagnare il processo, soprattutto in presenza di specie aliene invasive
- 4) ciò significa **progettare opere di reimpianto** di specie erbacee, arbustive o arboree a seconda degli obiettivi e prevedere un piano di monitoraggio e manutenzione negli anni successivi
- 5) utilizzare SOLO **materiale di provenienza locale e/o certificata**, geneticamente compatibile con le cenosi presenti
- 6) non rinverdimento ornamentale ma creazione di ecosistemi dinamici paranaturali

Dott. Agr. Alessandro Errico a.errico@cirf.org


Cosa è l'Ingegneria Naturalistica?

L' "Ingegneria Naturalistica" "è una disciplina tecnico-scientifica che studia le modalità d'uso, come materiali da costruzione, di piante vive, di parti di piante o di associazioni vegetali, spesso abbinate a materiali morti come pietre, legno, ferro" [Schiechtl].

L'Ingegneria Naturalistica è una disciplina tecnico – naturalistica che utilizza le **piante vive autoctone** come materiale da costruzione, in abbinamento ad altri materiali inerti tradizionali e non. (AIPIN)

Corda di cocco o filo di ferro zincato legato a paletti di legno Tondame Ø18-25cm

COPERTURA DIFFUSA DI ASTONI

Fig. 21: Fascinata viva di salici con una fascina sommersa come difesa al piede

PALIFICATA SPONDALE A PARETE DOPPIA

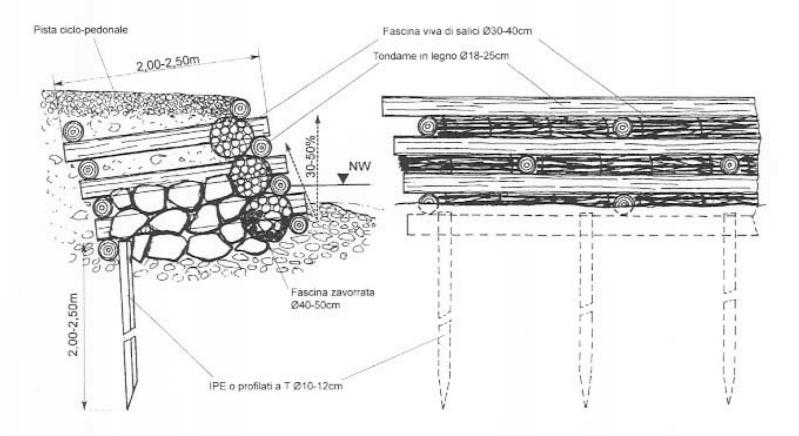


Fig. 32: Palificata spondale a parete doppia con fondo antidilavamento

Tipologie di interventi dell'I.N.

- di rivestimento o antierosivi (tutti i tipi di semina, stuoie, materassini seminati, ecc.);
- stabilizzanti (messa a dimora di arbusti, talee, fascinate, gradonate, cordonate, viminate, ecc.);
- combinati di consolidamento (palificate vive, muri, grate vive, muri a secco con talee, cuneo filtrante, gabbionate e materassi verdi, terre rinforzate, ecc.)
- particolari (barriere antirumore e paramassi, opere frangivento, ecc.)

I.N. 'Vera' e 'Falsa'

No. 20 20 20 20 20 20 20 20 20 20 20 20 20				
Ingegneria naturalistica				
vera	falsa			
I vegetale vivo è l'elemento che stabilizza e consolida il suolo proteggendone anche la superficie.	Il vegetale non è che un <i>elemento cosmetico</i> in opere di ingegneria civile (massicciate in massi, gabbioni, terre armate, georeti plastiche,).			
a ricolonizzazione e lo sviluppo spontaneo dei vegetali autoctoni sono favoriti per permetterne una evoluzione naturale.	Le tecniche messe in atto impediscono o rendono molto difficile lo sviluppo spontaneo, la ricolonizzazione o l'evoluzione naturale della flora.			
n condizioni particolari, dove lo sviluppo spontaneo non è possibile, si impiegano nunerose specie vegetali, autoctone, possibilmente disetanee e di ecotipi locali. Gli obiettivi, oltre alla protezione o stabilizzazione, sono la qualità biologica e la biodiversità. I siti ipristinati offrono ambienti vitali a una grande varietà di organismi viventi.	Sono utilizzate solo una o due specie. La qualità biologica e la biodiversità sono dunque scarse. La sistemazione non costituisce un ambiente vitale per numerose specie vegetali e animali.			
Le piante, il suolo, l'acqua formano un tutt'uno coerente e in stretta interdipendenza. Si cerificano tutte le condizioni per permettere e avorire lo sviluppo completo delle successioni regetali e delle relazioni fauna-flora, sulla pase dei modelli naturali.	Le piante, il suolo, l'acqua non sono in stretta relazione. Solo alcuni degli equilibri biologici sono favoriti. I vegetali piantati possono mantenersi per qualche tempo, e magari con assistenza. Non si instaurano il rinnovamento e la successione vegetazionale. Il sito è biologicamente povero e, spesso, colonizzato da specie esotiche invasive.			
L'intervento è frutto di una progettazione basata su conoscenze botaniche, idrauliche, pedologiche, geomorfologiche, geotecniche, ecologiche e sulla loro equilibrata integratione. L'osservazione e la comprensione dei enomeni esistenti sul terreno e dei modelli naturali costituiscono la base delle soluzioni e delle tecniche. Biologia e fisica s'incontrano.	La progettazione è basata unicamente su parametri fisici e matematici e non integra (se non minimamente) l'ecologia e gli altri fattori. Predomina una concezione costruttiva pura- mente ingegneristica.			
Presta attenzione agli habitat, rispettando o icostruendo una morfologia simile a quella naturale (in planimetria e sezione).	È spesso utilizzata come "cosmetico" in interventi il cui fine principale è il consolidamento dell'alveo che, per lo più, viene reso geometrico (rettilineo, ristretto, a sponde ripide).			

Tempi e costi dei rilievi per la stima della scabrezza: è sostenibile economicamente fare valutazioni preliminari?

Costo del taglio effettuato 4 km di fiume, 20 metri per sponda (circa 15 ha): (5-15000 €/ha)= circa 100'000 €

Costo dei rilievi vegetazionali: 500 € x 12 aree di saggio = 6000 €

Costo del post processing e della modellazione idraulica: 4000 €

IL COSTO DELLA VALUTAZIONE PRELIMINARE E' TRASCURABILE RISPETTO AL COSTO DELLE OPERAZIONI

SE CON UNA VALUTAZIONE PRELIMINARE SI RISPARMIASSE ANCHE SOLO IL TAGLIO DI 1 HA OGNI 15, IL BILANCIO SAREBBE GIA' IN PARI, MA AVREMMO ALMENO RIDOTTO L'IMPATTO SULL'ECOSISTEMA FIUME!