

Spett.le CITTA' METROPOLITANA DI TORINO

protocollo@cert.cittametropolitana.torino.it

Alla c.a: Dott. Guglielmo Filippini

e p.c, Spett.le: ARPA PIEMONTE

dip.torino@pec.arpa.piemonte.it

Alla c.a: Dott.ssa Antonella Pannocchia

e, p.c. Spett.le Comune di Torino

ambiente@cert.comune.torino.it

Alla c.a: Direzione Ambiente

Trasmessa via PEC

Torino, 28/04/2020

Prot. N° TR000333-2020-P

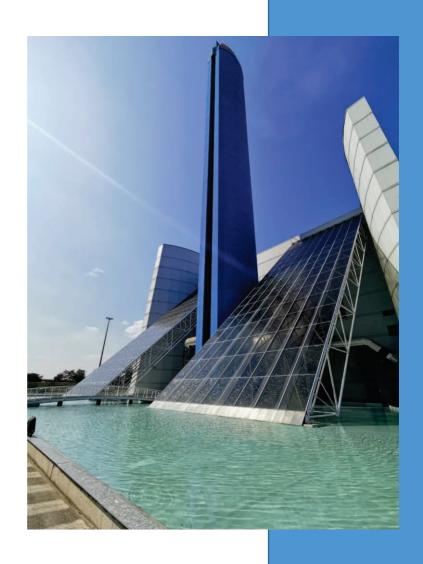
Oggetto: Termovalorizzatore del Gerbido

Relazione annuale ex. p.to 2.1.29 Det. 353-28635/2018

Ai sensi del p.to 2.1.29 della Det.353-28635/2018 si trasmette la relazione annuale relativa al funzionamento ed alla sorveglianza dell'impianto nell'anno 2019.

Cordiali saluti.

All: c.s.d.



2019

Relazione annuale relativa al funzionamento e alla sorveglianza dell'impianto

Relazione Tecnica annuale - Anno 2019 Relativa al funzionamento ed alla sorveglianza dell'impianto

In ottemperanza alla D.D. n.353-28635/2018

Sede stabilimento: Via Paolo Gorini 50 10137 – Torino (TO)

2019	0	16/04/2020		_	
Ed.	Rev.	Data	R.	٧.	Pag. 1/19

Sommario

1		Prei	messa	1	. 3				
2		Qua	adro Le	egislativo	. 4				
3		Pro	cesso		. 5				
	3.	1	Desc	rizione dell'impianto	. 5				
		3.1.	1 (Conferimento e combustione	. 5				
		3.1.	2 7	Trattamento fumi	. 6				
		3.1.	3 (Ciclo termico e generatore elettrico	. 7				
		3.1.	4 5	Sistema di monitoraggio delle emissioni (SME)	. 8				
	3.	2	Princ	ipali dati di esercizio	. 9				
		3.2.	1 F	Periodi di esercizio	. 9				
		3.2.	2 F	Rifiuti conferiti	. 9				
		3.2.	3 F	Rifiuti prodotti	10				
		3.2.	4 E	Energia elettrica	10				
		3.2.	5 (Consumo reagenti	10				
		3.2.	6 (Consumo acqua	10				
		3.2.	7 (Gas metano	11				
4		Emi	issioni	in atmosfera	12				
	4.	1	Monit	toraggio in continuo	12				
	4.	2	Monit	toraggio periodico	14				
	4.	3	Camp	pionamento in continuo IPA e diossine	16				
	4.4	4	Confr	ronto tra Flussi di massa autorizzati in AIA e Flussi di massa reali	16				
5		Mor	nitorag	ggio acque reflue	17				
6		Monitoraggio periodico acque di falda							
7		Tele	eriscal	damento	19				
Q		Con	nclusio	nni	10				

1 Premessa

La presente relazione è redatta per l'Autorità Competente (AC) ai sensi dell'Articolo 237 septiesdecies, c.5 del D.Lgs.152/06 e del punto 2.1.29 della Det. 353-28635/2018 (AIA TRM), e descrive l'andamento dell'impianto di termovalorizzazione di TRM S.p.A. relativamente al periodo compreso tra il 1 Gennaio ed il 31 Dicembre 2019.

Il decreto prevede che TRM, in qualità di gestore dell'impianto, predisponga annualmente una relazione sul funzionamento e sulla sorveglianza dell'impianto relativa all'anno precedente.

All'interno della relazione vengono riportate, per il periodo considerato, le informazioni relative a:

- periodi di funzionamento dell'impianto;
- tipologia e quantità di rifiuti conferiti in impianto e dei principali residui prodotti;
- energia utilizzata e prodotta dall'esercizio dell'impianto;
- combustibili ausiliari utilizzati e reagenti per il trattamento dei fumi;
- utilizzo dell'acqua;
- valutazione dei risultati delle misure sulle emissioni in atmosfera in riferimento ai valori limite di emissione;
- statistiche relative ai superi dei limiti previsti come definito dal D.Lgs. 152/06.

2 Quadro Legislativo

Il panorama legislativo a cui l'impianto è stato sottoposto nell'anno 2019 è il seguente:

✓ Decreto Legislativo N. 152 del 03/04/06 "Testo Unico Ambientale" e successive modifiche ed integrazioni (di seguito *D.Lgs. 152/06 e s.m.i.*) – "Norme in materia Ambientale"

3 Processo

3.1 Descrizione dell'impianto

L'impianto è autorizzato ad incenerire rifiuti solidi urbani residui dopo la raccolta differenziata e rifiuti speciali assimilabili agli urbani, compresi i sovvalli degli impianti di recupero rifiuti urbani e valorizzazione della raccolta differenziata.

Per garantire flessibilità ed efficienza di esercizio, l'impianto è articolato su tre linee gemelle, accomunate esclusivamente dai sistemi di stoccaggio dei rifiuti in ingresso, dei rifiuti prodotti e dalla turbina a vapore.

A far data del 16/7/15 TRM ha ottenuto con provvedimento n.135-22762/2015 della Città Metropolitana di Torino l'autorizzazione a saturazione del carico termico.

3.1.1 Conferimento e combustione

Il rifiuto è conferito all'impianto tramite gli automezzi delle aziende che ne curano la raccolta. Prima di entrare in impianto, quando ancora si trova sugli automezzi di conferimento, il rifiuto è sottoposto al controllo radioattività tramite un sistema di monitoraggio dinamico a portale.

La pesatura degli automezzi ed il controllo radioattività sono effettuati sui mezzi di trasporto rifiuti sia in ingresso sia in uscita dall'impianto. Ogni veicolo che conferisce rifiuti è univocamente identificato ed il carico è registrato automaticamente dal software di controllo e gestione dei rifiuti. Gli automezzi di conferimento, dopo la pesatura, raggiungono l'avanfossa, un locale coperto antistante le bocche di scarico. Tale locale rimane in lieve depressione per evitare la fuoriuscita di odori. Tutti i rifiuti vengono scaricati in una fossa chiusa direttamente dagli automezzi, ribaltabili o dotati di mezzi propri di espulsione.

All'interno della fossa i rifiuti sono mescolati tramite 2 carriponte con benna a polipo della capacità di 12m³ ciascuna. Le benne servono anche a trasferire il rifiuto dalla fossa alle tre tramogge di carico (una per ciascuna linea di combustione) che convogliano il rifiuto nei forni. Il rifiuto, all'interno della tramoggia e del canale di carico, isola la camera di combustione dal vano fossa, evitando ritorni di fiamma. Anche il vano fossa è in depressione rispetto all'esterno.

Il carroponte e la benna sono manovrati da un gruista, la cui cabina è posta su un lato del vano della fossa, in posizione rialzata e con ampia vetrata, in modo da consentire la totale visibilità della fossa. La cabina è dotata anche di monitor a circuito chiuso per dare al gruista un ulteriore grado di sorveglianza sulle tramogge di carico.

Il rifiuto, dopo essere entrato in caldaia dalla tramoggia di carico, è spinto da un alimentatore oleodinamico a cassetto sulla griglia di combustione. Essa è del tipo "mobile", ovvero un piano inclinato di barrotti fissi e mobili alternati, atti a rimestare ed a far scivolare il rifiuto verso il basso durante la combustione.

Le scorie di combustione sono raccolte in fondo alla griglia e convogliate allo spegnimento in apposite "gondole" piene d'acqua; quindi vengono stoccate in una fossa dedicata e inviate a recupero tramite automezzi. Tali scorie sono classificate come non pericolose. Le ceneri più leggere sono invece parzialmente raccolte nella seconda parte della caldaia, sotto gli scambiatori convettivi, attraverso tramogge dedicate e sono stoccate in appositi sili. Tali ceneri sono classificate come pericolose.

Il combustibile è costituito dal rifiuto stesso. L'aria primaria di combustione (aspirata dalla fossa rifiuti) è preriscaldata con vapore spillato dal ciclo; è quindi insufflata sotto la griglia e, attraverso le sue maglie, raggiunge la prima zona di combustione, dove il rifiuto comincia a bruciare. Successivamente i gas così liberati raggiungono la seconda zona di combustione, sopra la griglia,

dove è insufflata l'aria comburente secondaria; essa è prelevata dal locale caldaie, preriscaldata e mandata a completare la combustione.

I fumi attraversano quindi le sezioni radianti della caldaia, costituite da pareti membranate in cui evapora l'acqua del ciclo termico e, dopo una doppia svolta ad U, arrivano nella zona convettiva orizzontale dove scambiano calore con successivi fasci tubieri (surriscaldatori ed economizzatori) sempre percorsi internamente da acqua o vapore. Infine sono avviati alla fase di depurazione.

La norma prevede che i fumi di combustione permangano ad una temperatura superiore ad 850°C per un tempo maggiore di 2 s nella zona di post-combustione situata nel primo canale radiante, sopra la griglia di combustione. Per poter rispettare sempre questa condizione sono presenti dei bruciatori ausiliari a gas naturale che entrano in funzione qualora la temperatura dei fumi tenda a scendere al di sotto di 850°C. La temperatura di esercizio ordinaria è di circa 1.000°C.

La potenzialità di ciascuna caldaia è (al massimo carico, MCR):

- Portata di rifiuto alimentato: 22,50 t/h (considerando un PCI di 11.000 kJ/kg)
- Carico termico: 68,75 MW_t

3.1.2 <u>Trattamento fumi</u>

I sistemi di trattamento fumi trattengono le sostanze inquinanti, successivamente smaltite in impianti dedicati, oppure le trasformano in sostanze innocue prima di reimmetterle nell'ambiente.

Le principali sostanze inquinanti presenti nei fumi sono le seguenti:

- Gas acidi (HCl, HF, SO_X)
- Ammoniaca (NH₃)
- Metalli pesanti
- Microinquinanti organici (PCDD/F, IPA)
- Ossidi di azoto (NO_X)
- Incombusti
- Polveri e particolato

I dispositivi di trattamento fumi presenti sono i seguenti:

- Elettrofiltro
- Reattore a secco
- Filtro a maniche
- Reattori SCR

L'elettrofiltro consta di tre stadi, ciascuno dei quali genera un campo elettrico indipendente che attrae polveri e particolato; questi aderiscono alle piastre dell'elettrofiltro che vengono periodicamente ripulite con un sistema meccanico a percussione che fa cadere le ceneri nelle tramogge sottostanti. Tali ceneri sono stoccate in sili appositi (insieme a quelle provenienti dalla zona convettiva della caldaia) ed inviate agli impianti di smaltimento/recupero tramite automezzi.

Nel *reattore a secco* sono abbattuti i gas acidi, le diossine, i furani e i metalli pesanti; ciò avviene grazie all'immissione ed alla miscelazione nei fumi di reagenti in forma di polveri: bicarbonato di sodio (NaHCO₃) e carboni attivi. Essi trattengono le sostanze inquinanti o reagiscono con esse producendo composti gassosi non pericolosi che vengono espulsi dal camino (CO₂, H₂O, N₂) e residui solidi pericolosi trattenuti dal successivo filtro a maniche.

I reagenti sono iniettati e miscelati ai fumi grazie a condotti progettati in modo tale da aumentare la turbolenza del flusso favorendo le reazioni; i sali sodici prodotti dalle reazioni di abbattimento sono genericamente indicati come PSR.

Il filtro a maniche ha il compito di raccogliere il PSR prodotto nel reattore a secco (anch'esso in forma di polveri). Esso consiste in una batteria di maniche, con membrane in PTFE, suddivise in 6 moduli, ciascuno dei quali è indipendente ed escludibile dal flusso in caso di manutenzione. La pulizia delle maniche avviene in maniera periodica, durante il servizio, tramite impulsi d'aria compressa in contropressione che scuotono le maniche fino a far cadere le polveri depositate sulla loro superficie nelle tramogge sottostanti. Il PSR è stoccato in appositi sili e periodicamente prelevato per l'invio al recupero.

L'ampia superficie di contatto tra i fumi e le maniche del filtro generata dalle microporosità del tessuto di cui sono costituite, contribuisce ad aumentare il grado di avanzamento delle reazioni di depurazione cominciate nel reattore a secco ed incrementa sensibilmente l'efficienza di tutto il processo di trattamento fumi.

Nel *reattore SCR* sono abbattuti gli ossidi di azoto (NO_X). Ciascuna linea di termovalorizzazione è dotata di una batteria di tre reattori SCR in parallelo. A monte della batteria, nei fumi provenienti dal filtro a maniche sono miscelati gas contenenti ammoniaca; tali gas, a loro volta, provengono da un reattore separato, dove urea in soluzione acquosa è decomposta a dare NH₃ grazie al calore prodotto da un bruciatore a gas naturale. La miscela di fumi e gas ammoniacali entra poi nei tre reattori, dove l'ammoniaca abbatte gli NO_X dei fumi reagendo con essi grazie a delle sostanze catalizzatrici (ossidi di Vanadio, Titanio e Tungsteno) presenti sulle superfici ceramiche del reattore.

Per garantire un intimo contatto tra le sostanze reagenti ed i catalizzatori, i catalizzatori sono depositati su dei setti a nido d'ape (honeycomb). Tali setti sono ripuliti periodicamente dalle polveri con un sistema ad aria compressa o tramite rigenerazione termica. In particolare, quest'ultima consiste nel passaggio (in successione attraverso ciascuno dei tre reattori della batteria) di un flusso di gas a circa 300 °C, generati da un bruciatore a metano posto a monte degli stessi.

Il sistema di trattamento fumi termina con il ventilatore di aspirazione, che mantiene in depressione l'intera linea a partire dalla caldaia. Attraverso un silenziatore i fumi giungono poi alla canna fumaria da cui sono espulsi in atmosfera. A monte del ventilatore uno scambiatorepreleva calore dai fumi per immetterlo nel ciclo termico.

3.1.3 Ciclo termico e generatore elettrico

Nelle tre caldaie i fumi prodotti dalla combustione del rifiuto lambiscono le pareti membranate e gli scambiatori al cui interno passa l'acqua del ciclo termico. Essa vaporizza e trasporta l'energia termica così assorbita fino alla turbina per la produzione di energia elettrica; il vapore esausto dallo stadio di bassa pressione della turbina è poi riportato allo stato liquido in un condensatore e reimmesso negli scambiatori delle caldaie per ricominciare il ciclo. Tutto il sistema è integrato con una serie di scambiatori e dispositivi di trattamento del vapore atti a massimizzare il recupero energetico ed il rendimento del ciclo termico.

Il fluido di trasporto del calore nel circuito chiuso è acqua demineralizzata. Il ciclo con cui essa evolve nel circuito è di tipo Rankine surriscaldato. Le condizioni di funzionamento possono essere diverse. Quella nominale (MCR) prevede la produzione della sola elettricità con tre caldaie funzionanti. Tuttavia l'impianto è previsto per funzionare a regimi diversi: cogenerazione di elettricità e calore per teleriscaldamento (TLR); sola produzione di calore per TLR; marcia ridotta con 2 o una sola caldaia attiva; ecc...

Le caratteristiche del ciclo termico a vapore sono (in condizioni di MCR):

- Temperatura nominale: 420 °C
- Pressione nominale uscita caldaie: 60 bar(a)
- Energia termica assorbita nelle caldaie: 206 MW_t

Energia elettrica lorda prodotta: 65 MW_e (nell'ipotesi di sola produzione elettrica)

La produzione di energia elettrica da parte dell'impianto avviene nel generatore collegato alla turbina del ciclo termico. La trasmissione della coppia motrice dalla turbina al generatore avviene tramite accoppiamento rigido. Nella sottostazione elettrica la tensione del generatore è innalzata a 220 kV da opportuni trasformatori elevatori. Tale sottostazione svolge la funzione di connessione tra l'impianto e la rete elettrica esterna, consentendo il passaggio dell'energia nei due sensi (da e verso l'impianto). Nella sottostazione è previsto un gruppo di misure fiscali con lo scopo di contabilizzare sia l'energia prelevata dalla rete che quella immessa.

Il ciclo termico necessita di un sistema che condensi il vapore in uscita dalla turbina prima di reimmetterlo in caldaia. Ciò è realizzato nel condensatore, uno scambiatore a fascio tubiero attraverso cui il vapore del ciclo cede calore ad un circuito d'acqua di raffreddamento; tale acqua è poi inviata alle torri di raffreddamento, dove, per contatto diretto con l'aria atmosferica, cede ad essa il calore prelevato dal ciclo termico sotto forma di energia e di vapore. L'acqua di raffreddamento si raccoglie poi in apposite vasche poste sotto le torri e, dopo essere stata reintegrata della frazione dispersa in atmosfera, viene pompata nuovamente nel circuito di raffreddamento.

3.1.4 Sistema di monitoraggio delle emissioni (SME)

Ogni linea dispone del proprio camino; il sistema di monitoraggio delle emissioni comprende, per ciascuna linea, le seguenti misure in continuo:

- polveri
- CO
- HCI
- HF
- NH₃
- NOx
- SO₂
- COT

Sono inoltre presenti le misure di portata, umidità, temperatura e ossigeno.

Ad esclusione della misura delle polveri, di portata e temperatura, tutte le altre misure sono ridondate: sono cioè presenti due serie identiche di analizzatori su ciascuna linea. Ciò consente di massimizzare la disponibilità dei dati durante, ad esempio, le attività di calibrazione degli strumenti, in quanto è possibile fare affidamento sul secondo strumento installato.

Gli strumenti sopra indicati misurano i valori emissivi che vengono confrontati con i limiti di legge per consentire la verifica del rispetto degli stessi (misure di carattere fiscale).

Sono inoltre presenti strumenti di campionamento o misura a carattere conoscitivo; in particolare:

- ogni camino è dotato di un campionatore automatico in continuo per l'analisi dei microinquinanti organici (PCDD/F, IPA);
- ogni camino è inoltre dotato di strumentazione per la misura del mercurio.

Il sistema di monitoraggio si completa con una serie di strumenti installati direttamente in caldaia o a monte del sistema di trattamento fumi al fine di consentire una gestione ottimale della combustione e un dosaggio accurato dei reagenti.

In cabina analisi sono installati i PC di controllo dei dati a loro volta remotizzati in sala controllo per una maggiore comodità e tempestività di consultazione da parte delle squadre di conduzione.

3.2 Principali dati di esercizio

Nel seguito sono presentati i principali dati di esercizio relativi al periodo di attività dal 01/01/2019 fino al 31/12/2019.

3.2.1 Periodi di esercizio

Il numero di ore di funzionamento delle 3 linee dell'impianto di TRM S.p.A., nel corso dell'anno 2019, è indicato nella Tabella 1.

Linea	Ore di funzionamento
1	7.918
2	7.859
3	7.767

Tabella 1 - Periodi di esercizio - Anno 2019

3.2.2 Rifiuti conferiti

I rifiuti conferiti presso l'impianto nel corso dell'anno 2019 e le relative quantità sono elencati nella Tabella 2 di seguito riportata:

Codice	Descrizione rifiuto	Quantità (t)
190503	Compost fuori specifica	437,76
190801	Vaglio	1.830,75
190805	Fanghi prodotti dal trattamento delle acque reflue urbane	14.287,51
191204	Plastica e gomma	250,71
191212	Altri rifiuti (compresi materiali misti) prodotti dal trattamento meccanico dei rifiuti	82.837,48
200101	Carta e cartone	72,26
200108	Rifiuti biodegradabili di cucine e mense	1.008,42
200110	Abbigliamento	19,27
200111	Prodotti tessili	2,56
200132	Medicinali diversi da quelli di cui alla voce 20.01.31	18,11
200201	Rifiuti biodegradabili	312,12
200203	Altri rifiuti non biodegradabili	20,11
200301	Rifiuti urbani non differenziati	455.818,72
200302	Rifiuti dei mercati	5.171,79
200303	Residui della pulizia stradale	181,96
Totale		562.269,53

Tabella 2 – Rifiuti conferiti – Anno 2019

3.2.3 Rifiuti prodotti

I principali rifiuti prodotti dal trattamento di termovalorizzazione sono riportati nella Tabella 3 con le relative quantità prodotte nell'anno 2019:

Codice	Descrizione rifiuto	Quantità (t)
190102	Metalli ferrosi estratti da ceneri pesanti	1.377
190107	Rifiuti solidi prodotti dal trattamento dei fumi	8.509
190112	Ceneri pesanti e scorie, diverse da quelle di cui alla voce 190111	118.969
190113	Ceneri leggere, contenenti sostanze pericolose	11.131
Totale		139.986

Tabella 3 - Rifiuti Prodotti - Anno 2019

3.2.4 Energia elettrica

Nel corso del 2019 l'impianto ha prodotto una quantità di energia elettrica pari a ca. 427.392 MWh, di cui:

Energia Ceduta alla rete	ca. 361.735 MWh		
Energia per Autoconsumo	ca. 65.657 MWh		

Tabella 4 - Energia Elettrica - Anno 2019

3.2.4.1 Energia elettrica prelevata

Nel corso del 2019, inoltre, l'impianto ha prelevato dalla rete una quantità di energia elettrica pari a 790 MWh.

3.2.5 Consumo reagenti

Le quantità di reagenti consumate nel corso dell'anno 2019 per le attività condotte nell'impianto di TRM S.p.A. sono elencate nella Tabella 5:

Reagente	Descrizione utilizzo	Quantità (t)
Bicarbonato di sodio	Trattamento Fumi	10.088
Carbone attivo	Trattamento Fumi	720
Urea 45% (Soluzione acquosa)	Trattamento Fumi	1.585
Ipoclorito di Sodio	Torri Evaporative	98
Anticrostante/Disperdente	Torri Evaporative	15
Acido solforico 60-65% (Soluzione acquosa)	Torri Evaporative	375
Anticorrosivo	Torri Evaporative	6
Deossigenante	Ciclo termico	1
Antincrostante	Impianto Acqua DEMI	0,15

Tabella 5 – Consumo Reagenti - Anno 2019

3.2.6 Consumo acqua

Il processo di incenerimento e di trattamento fumi avviene completamente a secco, ossia senza l'utilizzo di acqua e, conseguentemente, senza la possibilità che l'acqua venga a contatto con i rifiuti o con i fumi di combustione. Il fabbisogno d'acqua, per quanto concerne la parte di processo, è

limitato al raffreddamento del ciclo termico ed ai reintegri dello stesso. I prelievi dell'acqua ad uso industriale avvengono dall'acquedotto industriale SAP, che approvvigiona acqua non potabile attraverso un campo pozzi presente in zona.

L'acqua ad uso civile è invece destinata alle utenze degli uffici e viene approvvigionata attraverso l'acquedotto SMAT.

Flusso	Quantità (m³)
Prelievo acqua ad uso industriale	ca. 1.284.270
Prelievo acqua ad uso civile	ca. 4.707
Scarico acqua ad uso industriale	ca. 198.525
Scarico acqua ad uso civile	ca. 4.707

Tabella 6 - Consumo di Acqua - Anno 2019

3.2.7 Gas metano

Il gas metano viene utilizzato nei forni di impianto principalmente per i seguenti scopi:

- riscaldamento per la fase di accensione,
- mantenimento della temperatura durante la fase di spegnimento,
- accensioni sporadiche per il supporto della combustione e
- dissociazione urea

Il gas prelevato dalla rete SNAM nel periodo 1/1/2019 - 31/12/2019 ammonta a ca. 3.145.785 Sm³.

4 Emissioni in atmosfera

Nel seguito del capitolo sono presentate le statistiche e le elaborazioni relative alle emissioni registrate nel corso del 2019.

La normativa di settore e l'Autorizzazione prevedono la sorveglianza delle emissioni attraverso un'attività di monitoraggio in continuo e un'attività di monitoraggio periodico.

4.1 Monitoraggio in continuo

L'impianto TRM è dotato, conformemente alle prescrizioni autorizzative, della rilevazione in continuo di HCI, CO, NOX, SO₂, COT, Polveri, HF ed NH₃.

I valori limite di emissione giornalieri e semiorari con i quali confrontare i dati prodotti dallo SME nel periodo di effettivo funzionamento dell'impianto, sono quelli fissati dalla Determinazione della Provincia di Torino n.27-3956/2012 e, dal 21/11/18, dalla Determinazione della Città Metropolitana di Torino n. 353-28635/2018. La Tabella 7, Tabella 8 e Tabella 9 forniscono le statistiche emissive per l'anno 2019, con riferimento alle misure in continuo di carattere fiscale.

CONFRONTO CON I VALORI LIMITE DI EMISSIONE SEMIORARI (AIA Tab.4 col. B e C e Tab.7 col. B)										
LINEA 1										
Parametri	Parametri Valori Limite (mg/Nm³) 100% 97%		N° medie valide	N° superamenti col. 100%	% rispetto col. 97%					
HCI	60	10	15826	0	99,7					
СО	100	n.a.	15826	22	n.a.					
NOx	400	200	15826	2	99,8					
SO ₂	200	50	15826	0	100,0					
COT	20	10	15824	1	100,0					
Polveri	30	10	15825	0	100,0					
HF	4	2	15826	0	100,0					
NH ₃	15	5	15826	2	99,8					
			LINE	A 2						
Valori Limite Parametri (mg/Nm³) 100% 97%		Vm³)	N° medie valide	N° superamenti col. 100%	% rispetto col. 97%					
HCI	60	10	15712	0	99,9					
СО	100	n.a.	15712	9	n.a.					
NO _X	400	200	15712	0	99,5					
SO ₂	200	50	15712	0	100,0					
COT	20	10	15711	0	100,0					
Polveri	30	10	15695	0	100,0					
HF	4	2	15712	0	100,0					
NH ₃	15	5	15712	0	99,9					

CONFRONTO CON I VALORI LIMITE DI EMISSIONE SEMIORARI (AIA Tab.4 col. B e C e Tab.7 col. B) LINEA 3 Valori Limite N° medie N° superamenti col. (mg/Nm³) Parametri % rispetto col. 97% valide 100% 100% 97% HCI 60 10 15525 0 99,9 CO 100 15525 21 n.a. n.a. NOx 400 200 15525 1 99,5 SO₂ 15525 200 50 100,0 0 COT 10 15524 99,9 20 1 Polveri 30 10 15525 100,0 0 HF 4 2 100,0 15525 0 100,0 NH₃ 15 5 15525 1

Tabella 7 - Statistiche Medie Semiorarie - Anno 2019

CONFRONTO CON I VALORI LIMITE DI EMISSIONE GIORNALIERI (AIA Tab.4 col. A e Tab.7 col. A)											
		LI	INEA 1		_	LINEA 2			LINEA 3		
Parametri	Valori Limite (mg/Nm³)	Supera Media med annua giorna		die	Media annua	Superamenti medie giornaliere		Media annua	Superamenti medie giornaliere		
			N°	%		N°	%		N°	%	
HCI	5	1,79	0	0	1,65	0	0	1,11	0	0	
CO	50	7,76	0	0	4,48	0	0	5,16	0	0	
NOx	70	38,22	0	0	40,95	0	0	42,79	0	0	
SO ₂	10	0,49	0	0	0,64	0	0	0,88	0	0	
COT	10	0,11	0	0	0,48	0	0	0,66	0	0	
Polveri	5	0,08	0	0	0,00	0	0	0,00	0	0	
HF	0,5	0,05	0	0	0,02	0	0	0,01	0	0	
NH ₃	5	0,93	0	0	0,91	0	0	0,73	0	0	

Tabella 8 - Statistiche Emissioni Giornaliere - Anno 2019

Riepilogo superamenti secondo D.Lgs.152/06 al 31/12/2019								
	LINEA 1	LINEA 2	LINEA 3					
N° di semiore con superamento dei limiti	4	0	4					
N° massimo ammesso di semiore con superi	120	120	120					

Tabella 9 – Superamenti - Anno 2019

I dati emissivi registrati nel corso del 2019 evidenziano una buona continuità del quadro emissivo rispetto all'anno precedente. Con riferimento al mercurio i dati registrati per l'anno 2019 forniscono i valori medi riportati nella seguente tabella:

Valori medi annuali Hg (μg/Nm³)									
Valore di riferimento	LINEA 1	LINEA 2	LINEA 3						
50	7,45	8,63	13,88						

Tabella 10 - Medie annuali Hg - Anno 2019

4.2 Monitoraggio periodico

L'Autorizzazione TRM (p.2.5.7) prescrive un controllo di carattere fiscale su metalli, diossine e IPA con cadenza quadrimestrale. A partire dal 1 gennaio 2016, a seguito degli aggiornamenti normativi connessi al D.Lgs. 46/14, è stata effettuata anche la misurazione dei PCB-DL (Policlorobifenili – Dioxin Like).

Sono stati effettuati controlli nei mesi di Marzo, Giugno e Ottobre per le Linee 1 e 2 e nei mesi di Febbraio, Giugno e Ottobre per la Linea 3; i risultati sono riportati in Tabella 11, 12 e 13 (sono inoltre oggetto di pubblicazione sul sito web TRM www.trm.to.it).

CON	CONFRONTO CON VALORI LIMITE DI EMISSIONE (AIA Tab.5 Col.A e Tab.6 Col.A)						
Misurazione	Parametro	U.d.M.	Concentrazione	Limite			
	Hg	mg/Nm³	0,0263	0,03			
	Cd+TI	mg/Nm³	0,0007	0,05			
Linnad	Metalli (Sb, As, Pb, Cr, Co, Cu, Mn, Ni, V, Sn)	mg/Nm³	0,1707	0,3			
Linea 1 25/03/2019	Zn	mg/Nm³	0,2623	0,5			
23/03/2019	IPA	ng/Nm³	< 190	5000			
	PCDD/F	pg/Nm³	< 2,669	50			
	PCB-DL	pg/Nm³	0,39133	50			
	Hg	mg/Nm³	< 0,0002	0,03			
	Cd+TI	mg/Nm³	< 0,0002	0,05			
Lines	Metalli (Sb, As, Pb, Cr, Co, Cu, Mn, Ni, V, Sn)	mg/Nm³	0,0966	0,3			
Linea 1 24/06/2019	Zn	mg/Nm³	0,1025	0,5			
24/00/2019	IPA	ng/Nm³	< 210	5000			
	PCDD/F	pg/Nm³	< 2,906	50			
	PCB-DL	pg/Nm³	0,54409	50			
	Hg	mg/Nm³	< 0,0002	0,03			
	Cd+TI	mg/Nm³	< 0,0002	0,05			
Linea 1 01/10/2019	Metalli (Sb, As, Pb, Cr, Co, Cu, Mn, Ni, V, Sn)	mg/Nm³	0,0905	0,3			
	Zn	mg/Nm³	0,2048	0,5			
01/10/2019	IPA	ng/Nm³	< 180	5000			
	PCDD/F	pg/Nm³	< 2,581	50			
	PCB-DL	pg/Nm³	< 0,43013	50			

Tabella 11 -Autocontrolli periodici anno 2019 Linea 1

CON	CONFRONTO CON VALORI LIMITE DI EMISSIONE (AIA Tab.5 Col.A e Tab.6 Col.A)						
Misurazione	Parametro	U.d.M.	Concentrazione	Limite			
	Hg	mg/Nm³	0,0031	0,03			
	Cd+Tl	mg/Nm³	< 0,0002	0,05			
Lines	Metalli (Sb, As, Pb, Cr, Co, Cu, Mn, Ni, V, Sn)	mg/Nm³	0,1091	0,3			
Linea 2 26/03/2019	Zn	mg/Nm³	0,1623	0,5			
20/03/2019	IPA	ng/Nm³	< 200	5000			
	PCDD/F	pg/Nm³	< 2,065	50			
	PCB-DL	pg/Nm³	0,34735	50			
	Hg	mg/Nm³	< 0,0002	0,03			
	Cd+Tl	mg/Nm³	< 0,0002	0,05			
Lines	Metalli (Sb, As, Pb, Cr, Co, Cu, Mn, Ni, V, Sn)	mg/Nm³	0,0613	0,3			
Linea 2 25/06/2019	Zn	mg/Nm³	0,058	0,5			
25/06/2019	IPA	ng/Nm³	< 210	5000			
	PCDD/F	pg/Nm³	< 2,881	50			
	PCB-DL	pg/Nm³	0,59716	50			
	Hg	mg/Nm³	< 0,0002	0,03			
	Cd+Tl	mg/Nm³	< 0,0002	0,05			
Linea 2 02/10/2019	Metalli (Sb, As, Pb, Cr, Co, Cu, Mn, Ni, V, Sn)	mg/Nm³	0,0541	0,3			
	Zn	mg/Nm³	0,0809	0,5			
02/10/2019	IPA	ng/Nm³	< 180	5000			
	PCDD/F	pg/Nm³	< 2,561	50			
	PCB-DL	pg/Nm³	0,42698	50			

Tabella 12 –Autocontrolli periodici anno 2019 Linea 2

COI	CONFRONTO CON VALORI LIMITE DI EMISSIONE (AIA Tab.5 Col.A e Tab.6 Col.A)						
Misurazione	Parametro	U.d.M.	Concentrazione	Limite			
	Hg	mg/Nm³	0,0164	0,03			
	Cd+Tl	mg/Nm³	< 0,0002	0,05			
Lines 2	Metalli (Sb, As, Pb, Cr, Co, Cu, Mn, Ni, V, Sn)	mg/Nm ³	0,1392	0,3			
Linea 3 07/02/2019	Zn	mg/Nm³	0,01	0,5			
0110212019	IPA	ng/Nm³	< 200	5000			
	PCDD/F	pg/Nm³	< 2,809	50			
	PCB-DL	pg/Nm³	0,47769	50			
	Hg	mg/Nm³	0,0037	0,03			
	Cd+TI	mg/Nm³	< 0,0002	0,05			
Lines 2	Metalli (Sb, As, Pb, Cr, Co, Cu, Mn, Ni, V, Sn)	mg/Nm³	0,0745	0,3			
Linea 3 06/06/2019	Zn	mg/Nm³	0,1619	0,5			
00/00/2019	IPA	ng/Nm³	< 230	5000			
	PCDD/F	pg/Nm³	< 3,23	50			
	PCB-DL	pg/Nm³	0,53866	50			
	Hg	mg/Nm³	0,0026	0,03			
	Cd+TI	mg/Nm³	< 0,0002	0,05			
1 : 2	Metalli (Sb, As, Pb, Cr, Co, Cu, Mn, Ni, V, Sn)	mg/Nm³	0,0562	0,3			
Linea 3 03/10/2019	Zn	mg/Nm³	0,0667	0,5			
03/10/2019	IPA	ng/Nm³	< 200	5000			
	PCDD/F	pg/Nm³	< 2,757	50			
	PCB-DL	pg/Nm³	< 0,5152	50			

Tabella 13 – Autocontrolli periodici anno 2019 Linea 3

4.3 Campionamento in continuo IPA e diossine

Al fine di rafforzare la frequenza e la significatività dei controlli sui microinquinanti organici, l'Ente autorizzante ha prescritto la realizzazione di un sistema di campionamento automatico e continuo (DECS). Tale sistema permette di campionare tutto il flusso di fumi in uscita dai camini; pertanto il dato di concentrazione che si ottiene dal campione (circa uno ogni 4 settimane) risulta rappresentativo di tutto il periodo di funzionamento dell'impianto.

I dati medi relativi all'anno 2019 sono elencati nella tabella seguente:

Valori medi annuali Diossine e IPA rilevati su campioni DECS						
	LINEA 1		LINEA 2		LINEA 3	
	Diossine	IPA	Diossine	IPA	Diossine	IPA
	(pg/Nm³)	(ng/Nm³)	(pg/Nm³)	(ng/Nm³)	(pg/Nm³)	(ng/Nm³)
Valore medio	0,061	0,018	0,054	0,088	0,063	0,125
Valore di riferimento	100	10.000	100	10.000	100	10.000

Tabella 14 – Valori Medi Diossine e IPA - Anno 2019

4.4 Confronto tra Flussi di massa autorizzati in AIA e Flussi di massa reali

In sede di Valutazione di Impatto Ambientale (VIA) lo scenario emissivo valutato positivamente era riferito all'impianto in marcia al massimo carico ed in condizioni di emissione pari ai limiti di legge.

Si propone nel seguito il confronto tra tale scenario e lo scenario effettivamente registrato.

	CONFRONTO TRA FLUSSI VALUTATI IN SEDE DI VIA E FLUSSI DI MASSA EFFETTIVI							VI				
	LINEA 1			LINEA 2			LINEA 3					
	Ore fnz.	Flusso VIA (t)	Flusso reale (t)	Reale/VIA %	Ore fnz.	Flusso VIA (t)	Flusso reale (t)	Reale/VIA %	Ore fnz.	Flusso VIA (t)	Flusso reale (t)	Reale/VIA %
NO _X		218,00	49,09	22,5%		216,01	50,92	23,6%		213,47	51,83	24,3%
Polveri		10,90	0,82	7,5%		10,80	0,09	0,9%		10,67	0,22	2,1%
СО	0.000	54,50	9,69	17,8%	0.000	54,00	6,44	11,9%	7.045	53,37	7,56	14,2%
HF	8.083	1,09	0,08	7,5%	8.009	1,08	0,05	4,5%	7.915	1,07	0,05	4,9%
HCI		10,90	2,62	24,0%		10,80	2,87	26,6%		10,67	1,99	18,7%
SOx		54,50	0,79	1,4%		54,00	1,00	1,8%		53,37	1,40	2,6%

Tabella 15 - Confronto tra flussi di massa - Anno 2019

Come si evince dalla tabella, ancorché il confronto effettuato sia fortemente cautelativo¹, l'impianto si è dimostrato in grado di emettere un flusso di inquinanti in misura sensibilmente inferiore a quanto previsto in fase autorizzativa; i dati più prossimi alle previsioni VIA sono infatti rappresentati dai flussi di HCl e di NO_x, che rappresentano tra il 20% e il 25% circa di quanto valutato in sede di VIA.

¹ I flussi di massa riportati nella colonna "Flusso VIA" sono riferiti allo scenario valutato positivamente in sede di VIA e quantificati nei soli periodi di marcia a rifiuto dell'impianto a partire dall'avvio delle operazioni di incenerimento; i valori indicati nella colonna "Flusso reale" comprendono anche i transitori di avvio e spegnimento a gas dell'impianto.

5 Monitoraggio acque reflue

Il sistema di depurazione dei fumi dell'impianto di incenerimento non produce acque reflue tecnologiche, essendo il sistema a secco.

Il sistema di raccolta e stoccaggio delle acque reflue di stabilimento gestisce, quindi, le seguenti tipologie di reflui:

- gli spurghi continui delle torri evaporative;
- gli spurghi continui e discontinui delle caldaie principali, delle caldaie ausiliarie e di avviamento, del circuito chiuso di raffreddamento, della demineralizzazione, i drenaggi del ciclo termico e le condense dal camino;
- le acque meteoriche;
- le acque di lavaggio dei piazzali;
- le acque reflue civili.

Lo scarico principale in pubblica fognatura è rappresentato dallo spurgo delle torri evaporative.

Con riferimento ai reflui liquidi prodotti dal ciclo termico (spurghi/condense/drenaggi), questi vengono raccolti nella "vasca acque industriali" e sono destinati allo spegnimento delle scorie.

Nel corso dell'anno 2019 è stato scaricato in fognatura un volume complessivo di acque reflue pari a ca. 203.232 m³

Sono eseguite periodicamente, in ottemperanza alle prescrizioni autorizzative, campionamenti sul punto di scarico autorizzato. Per l'anno 2019 sono stati eseguiti nelle date:

- 03/06/2019
- 02/12/2019

La tabella 16 riporta i valori medi relativi all'anno 2019 dei controlli effettuati sul punto di scarico autorizzato

AUTOCONTROLLI EMISSIONI IN ACQUA (pubblica fognatura) – Anno 2019 (AIA Tab.16)						
Parametro	Concentrazione (mg/l)					
1,1,2,2-Tetracloroetano	0,0125					
1,1,2-Tricloroetano	0,0125					
1,1-Dicloroetilene	0,0125					
1,2-Dicloroetano	0,0125					
1,2-Dicloropropano	0,0125					
Aldeidi	0,14					
Alluminio	0,05					
Arsenico	0,025					
Azoto ammoniacale come ione ammonio	2,345					
Azoto nitrico	11,5275					
Benzene	0,0125					
Boro	0,183					
Cadmio	0,002					
Cianuri totali	0,005					

AUTOCONTROLLI EMISSIONI IN ACQUA (pubblica f	fognatura) – Anno 2019 (AIA Tab.16)			
Parametro	Concentrazione (mg/l)			
Cloro attivo libero	0,1			
Cloruri	457,5			
Cloruro di vinilmonomero	0,0125			
COD	8,75			
Cromo	0,05			
Cromo esavalente	0,00875			
Esaclorobutadiene	0,0125			
Etilbenzene	0,0125			
Fenoli	0,005			
Ferro	0,05			
Fluoruri	0,415			
Fosforo totale	3,585			
Idrocarburi totali	0,25			
Manganese	0,05			
Mercurio	0,001			
Nichel	0,05			
Piombo	0,025			
Rame	0,01			
Selenio	0,002			
Solfati	1365			
Solfiti (come SO3)	0,05			
Solfuri (come H2S)	0,25			
Solidi sospesi totali	5			
Solventi clorurati	0,0315			
Solventi organici aromatici	0,0125			
Stagno	0,026			
Stirene	0,0125			
Tensioattivi anionici	0,25			
Tensioattivi non ionici etossilati	0,1			
Tensioattivi totali	0,375			
Tetracloroetilene	0,0125			
Toluene	0,0125			
Tricloroetilene	0,0125			
Triclorometano	0,0315			
Xileni totali	0,01			
Zinco	0,086			

Tabella 16 – Emissioni in acqua (pubblica fognatura) – Anno 2019

6 Monitoraggio periodico acque di falda

In continuità con le attività di sorveglianza della falda acquifera avviate alla fine dell'anno 2008 ed in ottemperanza alle prescrizioni autorizzative, nel corso dell'anno 2019 sono state condotte 4 campagne analitiche per la verifica della qualità delle acque sotterranee, trasmesse periodicamente all'Autorità Competente attraverso le comunicazioni di cui al Protocollo TRM: TR000290-2019-P, TR000492-2019-P, TR000644-2019-P, TR000144-2020-P.

I controlli, effettuati sui campioni prelevati nei piezometri del sito, sono stati eseguiti nelle seguenti date:

- 13/03/2019
- 13/06/2019
- 04/09/2019
- 05/12/2019

Le analisi condotte (rif. tab.18 AIA), hanno evidenziato valori in linea con i dati storici del sito, senza rivelare impatti attribuibili all'attività dell'impianto.

7 Teleriscaldamento

Il ciclo termico è realizzato in maniera da poter fornire parte del calore recuperato dai rifiuti alla rete di teleriscaldamento. Il sistema infrastrutturale e commerciale del teleriscaldamento, in capo alla società TLR V S.p.A. che nel 2016 è divenuta IREN Energia a seguito di fusione per incorporazione, è in fase di sviluppo.

Con l'anno 2019 sono stati completati i lavori di realizzazione delle apparecchiature interne all'edificio del teleriscaldamento e sono iniziate in dicembre le prime prove di fornitura del calore con la produzione di circa 384 MWh.

8 Conclusioni

Il 2019 dimostra una continuità nelle prestazioni tecniche ed ambientali rispetto agli anni precedenti. Si evidenzia un incremento dell'attività con lo smaltimento di ca. 560.000 tonnellate di rifiuti ed un conseguente aumento della quantità di energia prodotta rispetto l'anno precedente.